#Scenario 3:Spatial pattern driven by cell proportion(false positive)
#(y1, y2): cardinal spot location on whole map
#(x,x): cardinal spot location on pattern area
#k: thickness of layer
#1/r: rate of chaneging between adjacent layer
#n1: proportion of cell type A on cardial spot
#l: length of background
#ave1, ave2: mean of negative binomial distribution followed by cell type 1 and 2 cell's gene counts
#base: base cell number on spot level
#sz: size parametet of NB distribution followed by cell type 1 and 2 (the same) cell's gene counts
library(scatterpie)
kernalcp<-function(y1,y2,x,k,r,n1,l,ave1,ave2,base,sz){
set.seed(103)
#background map
aresult1<-matrix(rep(0,(l^2)),nrow=l,ncol=l)
aresult2<-matrix(rep(0,(l^2)),nrow=l,ncol=l)
#result is pattern on cell proportion of cell type 1 and 2
result<-matrix(rep(0,(2*x-1)^2),nrow=2*x-1,ncol=2*x-1)
result2<-matrix(rep(0,(2*x-1)^2),nrow=2*x-1,ncol=2*x-1)
#base gene counts of spot level of cell type 1 and 2
tresult1<-matrix(rnbinom(l^2,mu=ave1,size=sz)*(rpois(l^2,base)+1),nrow=l,ncol=l)
tresult2<-matrix(rnbinom(l^2,mu=ave2,size=sz)*(rpois(l^2,base)+1),nrow=l,ncol=l)
#base cell number on spot level in pattern area
numresult<-matrix(rpois((2*x-1)^2,base)+1,nrow=2*x-1,ncol=2*x-1)
#base cell number on spot level in whole area
Numresult<-matrix(rpois(l^2,base)+1,nrow=l,ncol=l)
result[x,x]<-n1
# x-1 has to be divided by k
#four corner on every k "layer"
for (t in (0:((x-1)/k-1))) {
result[x-(t+1)*k,x+(t+1)*k]<-(1/r)*result[x-t*k,x+t*k]
result[x+(t+1)*k,x+(t+1)*k]<-(1/r)*result[x+t*k,x+t*k]
result[x-(t+1)*k,x-(t+1)*k]<-(1/r)*result[x-t*k,x-t*k]
result[x+(t+1)*k,x-(t+1)*k]<-(1/r)*result[x+t*k,x-t*k]
#four corner on every layer between k-1 and k
for (i in (0:(k-1))) {
result[x-(t+1)*k+i,x+(t+1)*k-i]<-result[x-(t+1)*k,x+(t+1)*k]
result[x+(t+1)*k-i,x+(t+1)*k-i]<-result[x+(t+1)*k,x+(t+1)*k]
result[x-(t+1)*k+i,x-(t+1)*k+i]<-result[x-(t+1)*k,x-(t+1)*k]
result[x+(t+1)*k-i,x-(t+1)*k+i]<-result[x+(t+1)*k,x-(t+1)*k]
#every line aligned to the corner (clockwisely)
for (j in (1:(2*((t+1)*k-i)-1))) {
result[x-(t+1)*k+i+j,x+(t+1)*k-i] <-result[x-(t+1)*k+i,x+(t+1)*k-i]
result[x+(t+1)*k-i,x+(t+1)*k-i-j] <-result[x+(t+1)*k-i,x+(t+1)*k-i]
result[x-(t+1)*k+i,x-(t+1)*k+i+j] <-result[x-(t+1)*k+i,x-(t+1)*k+i]
result[x+(t+1)*k-i-j,x-(t+1)*k+i] <-result[x+(t+1)*k-i,x-(t+1)*k+i]
}
}
}
# cell proportion of cell type 2
result2<-1-result
generate1<-function(s){
numb<-rpois(1,lambda=s)+1
g<-sum(rnbinom(numb,mu=ave1,size=sz))
return(list(numb,g))
}
generate2<-function(s){
numb<-rpois(1,lambda=s)+1
g<-sum(rnbinom(numb,mu=ave2,size=sz))
return(list(numb,g))
}
cresult<-sapply(result*numresult,generate1)
cresult2<-sapply(result2*numresult,generate2)
#dresult is sum of gene counts of each spot in pattern part (cell type1)
dresult<-matrix(as.numeric(cresult[2,]),nrow=2*x-1,ncol=2*x-1,byrow=T)
#nresult is cell number of each spot (cell type1)
nresult<-matrix(as.numeric(cresult[1,]),nrow=2*x-1,ncol=2*x-1,byrow=T)
#dresult2 is sum of gene counts of each spot in pattern part (cell type2)
dresult2<-matrix(as.numeric(cresult2[2,]),nrow=2*x-1,ncol=2*x-1,byrow=T)
#nresult2 is cell number of each spot (cell type2)
nresult2<-matrix(as.numeric(cresult2[1,]),nrow=2*x-1,ncol=2*x-1,byrow=T)
#pattern on cell number (cell type 1)
aresult1[y1,y2]<-nresult[x,x]
for (i in (0:min(c((y1-1),(x-1))))){
aresult1[y1-i,y2]<-nresult[x-i,x]
for (j in (0:min(c((y2-1),(x-1))))){
aresult1[y1-i,y2-j]<-nresult[x-i,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
aresult1[y1-i,y2+t]<-nresult[x-i,x+t]
}
}
for (s in (0:min(c((l-y1),(x-1))))){
aresult1[y1+s,y2]<-nresult[x+s,x]
for (j in (0:min(c((y2-1),(x-1))))){
aresult1[y1+s,y2-j]<-nresult[x+s,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
aresult1[y1+s,y2+t]<-nresult[x+s,x+t]
}
}
#pattern on cell number (cell type 2)
aresult2[y1,y2]<-nresult2[x,x]
for (i in (0:min(c((y1-1),(x-1))))){
aresult2[y1-i,y2]<-nresult2[x-i,x]
for (j in (0:min(c((y2-1),(x-1))))){
aresult2[y1-i,y2-j]<-nresult2[x-i,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
aresult2[y1-i,y2+t]<-nresult2[x-i,x+t]
}
}
for (s in (0:min(c((l-y1),(x-1))))){
aresult2[y1+s,y2]<-nresult2[x+s,x]
for (j in (0:min(c((y2-1),(x-1))))){
aresult2[y1+s,y2-j]<-nresult2[x+s,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
aresult2[y1+s,y2+t]<-nresult2[x+s,x+t]
}
}
#spot level pattern (cell type 1)
tresult1[y1,y2]<-dresult[x,x]
for (i in (0:min(c((y1-1),(x-1))))){
tresult1[y1-i,y2]<-dresult[x-i,x]
for (j in (0:min(c((y2-1),(x-1))))){
tresult1[y1-i,y2-j]<-dresult[x-i,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
tresult1[y1-i,y2+t]<-dresult[x-i,x+t]
}
}
for (s in (0:min(c((l-y1),(x-1))))){
tresult1[y1+s,y2]<-dresult[x+s,x]
for (j in (0:min(c((y2-1),(x-1))))){
tresult1[y1+s,y2-j]<-dresult[x+s,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
tresult1[y1+s,y2+t]<-dresult[x+s,x+t]
}
}
#spot level pattern (cell type 2)
tresult2[y1,y2]<-dresult2[x,x]
for (i in (0:min(c((y1-1),(x-1))))){
tresult2[y1-i,y2]<-dresult2[x-i,x]
for (j in (0:min(c((y2-1),(x-1))))){
tresult2[y1-i,y2-j]<-dresult2[x-i,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
tresult2[y1-i,y2+t]<-dresult2[x-i,x+t]
}
}
for (s in (0:min(c((l-y1),(x-1))))){
tresult2[y1+s,y2]<-dresult2[x+s,x]
for (j in (0:min(c((y2-1),(x-1))))){
tresult2[y1+s,y2-j]<-dresult2[x+s,x-j]
}
for (t in (0:min(c((l-y2),(x-1))))){
tresult2[y1+s,y2+t]<-dresult2[x+s,x+t]
}
}
#Pattern of Average gene expression
avreuslt1<-tresult1/aresult1
avreuslt2<-tresult2/aresult2
#Spot level pattern
tresultf<-tresult1+tresult2
avresultf<-tresultf/(aresult1+aresult2)
# graph1<-filled.contour(x = 1:nrow(tresultf),y = 1:ncol(tresultf),
# z = tresultf, color.palette = myPalette,
# plot.title = title(main = "Pattern Drive by Cell Proportion",
# xlab = "x-coordinate",ylab = "y-coordinate"),
# plot.axes = {axis(1, seq(1, ncol(tresultf), by = 5))
# axis(2, seq(1, nrow(tresultf), by = 5))},
# key.title = title(main="Gene\n(counts)"),
# key.axes = axis(4, seq(min(tresultf), max(tresultf), by = 200))
# )
# graph2<-filled.contour(x = 1:nrow(avresultf),y = 1:ncol(avresultf),
# z = avresultf, color.palette = myPalette,
# plot.title = title(main = "Pattern of Average Gene Expression",
# xlab = "x-coordinate",ylab = "y-coordinate"),
# plot.axes = {axis(1, seq(1, ncol(avresultf), by = 5))
# axis(2, seq(1, nrow(avresultf), by = 5))},
# key.title = title(main="Gene\n(counts)"),
# key.axes = axis(4, seq(min(avresultf), max(avresultf), by = 3))
# )
k1<-as.numeric(aresult1)
k2<-as.numeric(aresult2)
cellnum<-data.frame(xaxis=rep(1:l,l), yaxis=rep(1:l,each=l))
n<-nrow(cellnum)
cellnum$region <- factor(1:n)
cellnum$A <- k1
cellnum$B <- k2
cellnum$radius<- 0.31
p <- ggplot() + geom_scatterpie(aes(x=xaxis, y=yaxis, group=region, r=radius), data=cellnum,
cols=LETTERS[1:2], color=NA) + coord_equal()
p + geom_scatterpie_legend(cellnum$radius, x=0, y=0)
finalresult<-list(p,aresult1,aresult2,tresult,avresultf)
return(finalresult)
}
kernal6<-kernalcp(10,20,31,2,1.1,1,30,100,50,50,20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.